Assessment of Nutritional Composition and Heavy Metal Levels in Okra and Tomato Crops Treated with Liquid Biofertilizer

Authors

  • Gift Atumatuchukwu Uzah Department of Microbiology, Ignatius Ajuru University of Education, Nigeria
  • Vivian Chime Nwaugo Azike Department of Microbiology, Ignatius Ajuru University of Education, Nigeria
  • Lasbry Chidi Nnodim Department of Microbiology, Rivers State University, Nigeria.
  • Chimezie Jason Ogugbue Department of Microbiology, University of Port Harcourt, Nigeria.

DOI:

https://doi.org/10.63561/jacsr.v2i4.1018

Keywords:

Sustainable Agriculture, Liquid Biofertilizer, Nutritional Quality, Food Safety, Heavy Metals

Abstract

The shift towards sustainable agriculture has intensified the use of liquid biofertilizers as alternative to synthetic fertilizers due to their role in improving soil health and plant nutrient uptake; but there are limited studies on their impact on the nutritional quality and toxicological safety of produce. This study is designed to assess the impacts of liquid biofertilizer on the nutritional and heavy metal concentrations of Okra (Abelmoschus esculentus) and Tomato (Solanum lycopersicum) crops. Okra and Tomato crops were treated with liquid biofertilizer containing microbial consortia (Aspergillus niger, Penicillium chrysogenum, Bacillus cerus, Bacillus licheniformis, Pseudomonas fluorescens and Azotobacter chroococcum). The proximate composition (%) for harvested Okra and tomato fruits treated with biofertilizer were; ash content (0.83±0.04 and 1.00±0.00); carbohydrate content (8.31±0.04 and 9.93±0.00); Fibre content (15.91±1.35 and 8.55±0.06); Lipid content (0.50±0.01 and 0.43±0.01); moisture content (98.60±0.03 and 87.45±0.02), protein content (6.52±0.02 and 5.66±0.04) and vitamin C content (Mg/Kg) (112.22±1.57 and 94.46±0.02) respectively. The heavy metal concentrations (mg/Kg) from harvested fruits ranged from 1.87±0.028 - 38.025±0.035; 0.00±0.00 - 4.46±0.269; 69.00±0.14 - 183.67±0.03 and 0.00±0.00 for Zinc, Lead, Iron and copper, respectively. Statistically, the treatments were significant at P<0.000 for concentrations of the heavy metals by the both plants. This study concludes that the use of the tested liquid biofertilizer is not only an effective strategy for boosting the productivity of okra and tomato but also a safe and valuable method for enhancing the nutritional value of the harvest, thereby recommending its integration into sustainable food production systems.

References

Abdel-Haleem, A. H. E., Naglaa, A. A. A., Eman, M. T., & Sayed, G. (2022). Bio-Stimulants Extend Shelf Life and Maintain Quality of Okra Pods. Agriculture, 12(10), 1699 https://doi.org/10.3390/agriculture12101699.

Alkaff, H. A., & Hassan, A. A. (2003). Effect of bio-fertilizer, organic fertilizer and foliar application of power 4 on the growth and yield of okra plants. Journal of Natural and Applied and Science, 7(2), 25-35.

Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 971.

Altaf, M. M., Diao, X., ur Rehman, A., Imtiaz, M., Shakoor, A., & Altaf, M. A. (2021). Effect of plant growth-promoting rhizobacteria on the growth and quality of tomato and okra. Journal of Plant Nutrition, 44(8), 1191-1206.

AOAC (1995). Official Methods of Analysis,16th Ed. Association of Official Analytical Chemist, Washington D.C.

Asfa, R., Bilal, A., Shahid, U., & Mohammad, S. K. (2022). Bacterial biofertilizers for bioremediation: A priority for future research. Trends of Applied Microbiology for Sustainable Economy, Chapter 21, 565-612

Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94.

Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., & Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1473.

Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(1), 1-10.

Bojórquez, C., & Voltolina, D. (2016). The metal removal capabilities of two microalgae strains after a contaminated sediment bioremediation treatment. Water, Air, & Soil Pollution, 227(12), 467. https://doi.org/10.1007/s11270-016-3175-6

Cheng, Z.; Gong, X.; Jing, W.; Peng, Z., & Li, J. (2018). Quality Change of Postharvest Okra at Different Storage Temperatures. Journal of Food Engineering, 7: 43–46.

Esertas, U., Akpinar, I., & Akdogan, G. (2020). Siderophore production of Bacillus spp. isolated from rhizosphere soil of some medicinal plants. Journal of Anatolian Environmental and Animal Sciences, 5(4), 684–689.

Fageria, N. K., Barbosa-Filho, M. P., Adonis Moreira, A., & Guimarães, C. M. (2009). Foliar Fertilization of Crop Plants. Journal of Plant Nutrition, 32(6), 1044-1064

Fan, D., Hodges, D. M., Critchley, A. T. & Prithiviraj, B. A. (2013). Commercial Extract of Brown Macroalga (Ascophyllum nodosum) Affects Yield and the Nutritional Quality of Spinach In Vitro. Commun. Soil Sci. Plant Anal., 44, 1873–1884.

Ferreira, M. J., Silva, H., & Cunha, A. (2019). Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: A review. Pedosphere, 29(4), 409–420. https://doi.org/10.1016/S1002-0160(19)60810-6

Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M., & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Journal of Hazardous Materials, 415, 125581.

Haroun, M., El-Sayed, A. A., El-Gamal, A. D., & Rizk, M. A. (2023). Influence of biofertilizer on heavy metal bioremediation and soil enzyme activity in contaminated soils. Scientific Reports, 13(1), 18314.

Huang, H. & Jiang, Y. (2012). Effect of plant growth regulators on banana fruit and broccoli during storage. Scientia Horticulturae, 145: 62–67.

Kaushik, P., Simón, M. R., Tobías, I., & Corrado, M. (2022). Biofertilizers and biocontrol agents for agriculture: How to identify and manage potential risks. Plants, 11(16), 2159. https://doi.org/10.3390/plants11162159

Khan, N., Bano, A., & Zandi, P. (2018). Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance. Journal of Plant Interactions, 13, 239–247

Kim, M. J., Shim, C. K., Kim, Y. K., Ko, B. G., Park, J. H., Hwang, S.G., & Kim, B.H. (2018). Effect of biostimulator Chlorella fusca on improving growth and qualities of chinese chives and spinach in organic farm. Plant Pathology Journal, 34, 567–574.

Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078.

Kügler, J. H., Le Roes-Hill, M., Syldatk, C., & Hausmann, R. (2020). Surfactants tailored by the class Actinobacteria. Frontiers in Bioengineering and Biotechnology, 8, 661. https://doi.org/10.3389/fbioe.2020.00661

Kumar, A., & Prasanna, R. (2021). Microbial biofertilizers: Current trends and future prospects. In Microbial Biofertilizers and Micronutrient Availability. Springer, Cham. (pp. 1-23).

Kwunonwo, C. C., Okeke, O. C., & Okoye, N. H. (2020). A study of heavy metal contamination of the soil-crop system and the risk to human health. World News of Natural Sciences, 31, 132–144.

Ma, Y., Rajkumar, M., Rocha, I., Oliveira, R. S., & Freitas, H. (2015). Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Frontiers in Plant Science, 5, 757. https://doi.org/10.3389/fpls.2014.00757

Mahdi, S. S., Hassan, G. I., Samoon, S. A., Rather, H. A., Dar, S. A., & Zehra, B. (2020). Bio-fertilizers in organic agriculture. Journal of Phytology, 12, 95-99.

Maitlo, A. A., Shah, Z., Shah, N. & Hajra, K. (2006). Growth, Yield and Nutrient Uptake of Wheat (Triticum aestivum L.) in relation to Foliar and Soil Application of Urea. International Journal of Agriculture and Biology, 8(4), 477-481.

Mishra, J., Singh, R., & Arora, N. K. (2003). Plant growth–promoting rhizobacteria: Mechanisms and applications. Indian Journal of Microbiology, 43(2), 85–100.

Oluwagbenga, D. & Solomon, C. A. (2016). Effect of Liquid Bio-Fertilizer (Alpha Life) on The Growth, Yield and Proximate Analysis of Okra (Abelmoschus esculentus) on Landmark University Soil. Scientia Agriculturae, 16(2), 43-48.

Rosa-Palacios, K., Reyes-Pérez, J. J., Hernández-Montiel, L. G., Rueda-Puente, E. O., & Vero, S. (2022). Biofertilizers: An alternative to improve the quality of edible crops. Agronomy, 12(6), 1334.

Ruzzi, M., & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae, 196, 124-134.

Sharma, S., Kour, R., & Singh, B. (2023). Biofertilizers and their role in sustainable vegetable production: A review on nutrient enrichment and heavy metal translocation. Scientia Horticulturae, 310, 111712.

Tarekegn, M. M., Salilih, F. Z., & Ishetu, A. I. (2020). Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food & Agriculture, 6(1), 1783174. https://doi.org/10.1080/23311932.2020.1783174

Vijayalakshmi, R., Kairunnisa, K., Sivvaswamy, N., Dharan, S. S., & Natarajan, S. (2019). Enzyme production and antimicrobial activity of endophytic bacteria isolated from medicinal plants. Indian Journal of Science and Technology, 12(6), 1–10. https://doi.org/10.17485/ijst/2019/v12i6/141767

Xu, C. & Leskovar, D. I. (2015). Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Scientia Horticulturae (Amsterdam), 183, 39–47.

Zhao, L., Wang, Y., & Yang, J. (2020). The role of siderophores in the biocontrol by Rhizobium spp. of potato common scab. Biological Control, 150, 104350. https://doi.org/10.1016/j.biocontrol.2020.104350

Published

2025-12-30

How to Cite

Uzah, G. A., Nwaugo Azike, V. C., Nnodim, L. C., & Ogugbue, C. J. (2025). Assessment of Nutritional Composition and Heavy Metal Levels in Okra and Tomato Crops Treated with Liquid Biofertilizer. Faculty of Natural and Applied Sciences Journal of Applied Chemical Science Research, 2(4), 36–39. https://doi.org/10.63561/jacsr.v2i4.1018

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.