Effects of Soil Burial on Polythene Film Degradation and Associated Bacterial Species

Authors

  • Iniobong Ime James Department of Biological Sciences, Akwa Ibom State Polytechnic, Ikot Osurua, Ikot Ekpene LGA, Akwa Ibom State, Nigeria
  • Hasadiah Okon Bassey Department of Biological Sciences, Akwa Ibom State Polytechnic, Ikot Osurua, Ikot Ekpene LGA, Akwa Ibom State, Nigeria
  • Esthella Anietie Ekong Department of Biological Sciences, Akwa Ibom State Polytechnic, Ikot Osurua, Ikot Ekpene LGA, Akwa Ibom State, Nigeria
  • Otobong Donald Akan Department of Microbiology, Akwa Ibom State University, Ikot Akpaden, Mkpat Enin LGA, Akwa Ibom State, Nigeria
  • Usenobong Friday Ufot Department of Biochemistry, Akwa Ibom State University, Ikot Akpaden, Mkpat Enin LGA, Akwa Ibom State, Nigeria
  • Mfoniso F Iwatt Department of Microbiology, Akwa Ibom State University, Ikot Akpaden, Mkpat Enin LGA, Akwa Ibom State, Nigeria

DOI:

https://doi.org/10.63561/jabs.v2i4.1008

Keywords:

Polythene, Polythene Degradation, Plastic Pollution

Abstract

This study investigated the bacterial degradation of polythene in soil. Polythene bags were obtained from a commercial store, and buried in soil for 45 days (P1) and 90 days (P2). An unburied control (P0) was retained. Soil from the polythene-buried site (S1-S5) and adjacent pristine soil (C1-C5) were obtained for bacteriological analysis. Total heterotrophic bacterial (THB) count of soil samples (C and S) was analyzed using pour plate method on nutrient agar plates. Polythene-degrading bacterial (PDB) counts were obtained after enrichment in mineral salts medium. Polythene degradation was evaluated using Scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectrometry. THB ranged from 1.39 ± 0.02 105 CFU/g to 2.79 ± 0.04 105 CFU/g in pristine soil samples. PDB counts were 1.73 ±0.03 102 CFU/g to 2.67 ±.05102 CFU/g. bacterial genera obtained included: Bacillus, Staphylococcus Enterobacter, Micrococcus Pseudomonas Escherichia, Proteus and Alcaligenes species, with occurrences of (%): 18.9, 9.4, 13.4, 4.7, 12.7, 13.5, 21.7 and 5.7 in pristine soil. Escherichia coli, Proteus and Alcaligenes were not observed in plastic debris soil. Variations in the PDB counts and THB counts suggest that a small but significant population of bacteria in the soil can adapt to exposure to polythene burial, becoming capable of polythene degradation. SEM images revealed deterioration of PE surface after burial, with large with cavities, cracks, and holes, consistent with biodegradation process. FT-IR spectra indicated biodegradation, with the disappearance of functional group peaks suggestive microbial metabolism of polythene additives and pro-oxidant, alongside the emergence of a new peaks suggestive of microbial colonization and attack of the oxidative polymeric metrics.

References

Ali, M. I., Perveen, Q., Ahmad, B., Javed, I., Razi-Ul-Hussain, R., Andleeb, S., Atique, N., Ghumro, P. B., Ahmed, S., & Hameed, A. (2009). Biodegradation studies of cellulose blended polyvinyl chloride films. International Journal Agriculture and Biology, 11, 577–580.

Alshehrei, F. (2017). Biodegradation of synthetic and natural plastic by microorganisms Journal of Applied and Environmental Microbiology, 5(1), 8-19.

Ashike, H. M. (2024). Nigeria recycles less than 15 % of plastic waste generated-NCIC. BusinessDay, 1st June. www.businessday.ng. Accessed 4th August 2025.

Bhatia, M., Girdhar, A., Tiwari, A., & Nayarisseri, A. (2014). Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach. SpringerPlus 3, 1–10.

Brandspur (2017). Nigeria plastic production Q4 2017. https://brandspurng.com. Accessed 25th June, 2025.

Chesbrough, M. (2010). District Laboratory Practice in Tropical Countries (2nd Part). Cambridge University Press, Cambridge. Pp. 36-54, 367-372.

Dang, T. C. H., Nguyen, D. T., Thai, H., Nguyen, T. C., Tran, T. T. H., Le, V. H., Nguyen, V. H., Tran, X. B., Pham, T. P. T., Nguyen, T. G., & Nguyen, T. P. (2018). Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam. Advances Natural Science, 9, 015014.

Das, P. M., & Kumar, S. (2014). Microbial deterioration of low density polyethylene by Aspergillus and Fusarium sp. Int. J. Chem. Tech. Res., 6(1), 299-305

Gajendiran, A., Krishnamoorthy, S., & Abraham, J. (2016). Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. Biotech 6, 52.

Ghasemglou, M., Daver, F., Murdoch, B. J., Ball, A. S., Ivanova, E. P., & Benu, A. (2022). Biodegradation of novel plastics made of starch, polyhydroxyurethanes and cellulose nanocrystals in soil environment. Science of the Total Environment, 815, 152684.

Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey’s Manual of Determinative Bacteriology. 9th Edition. Williams and Williams Co., Baltimore.

Kathiresan, K. (2003). Polythene and plastics-degrading microbes from the mangrove soil. Rev. Biology Tropics, 51(3), 629-634.

Kopecká, R., Kubínová, I., Sovová, K., Mravcová, L., Vítěz, T., & Vítězová, M. (2022). Microbial degradation of virgin polyethylene by bacteria isolated from a landfill site. SN Applied Sciences, 4, 302

Kotovaa, I. B., Taktarovaa, Y.V., Tsavkelovaa, E. A., Egorovaa, M. A., Bubnova, I. A., Malakhovaa, D.V., Shirinkinaa, L. I., Sokolovab, T. G., & Bonch-Osmolovskayaa, E. A. (2021). Microbial degradation of plastics and approaches to make it more efficient. Mikrobiologiya, 90(6), 671–701

Kyaw, B. M., Champakalakshmi, R., Sakharkar, M. K., Lim, C. S. and Sakharkar, K. R. (2012). Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian Journal of Microbiology, 52(3), 411–419

MacLean, J., Mayanna, S., Benning, L.G., Horn, F., Bartholomäus, A., Wiesner, Y., Wagner, D., & Liebner, S. (2021). The terrestrial plastisphere: diversity and polymer-colonizing potential of plastic- associated microbial communities in soil. Microorganisms, 9, 1876.

Mastalygina, E., Abushakhmanova, Z., Poletto, M., & Pantyukhov, P. (2023). Biodegradation in soil of commercial plastic bags labelled as “biodegradable”. Materials Research, 26, e20220164.

Nademo, Z. M., Shibeshi, N. T., & Gemeda, M. T. (2023). Isolation and screening of low-density polyethylene (LDPE) bags degrading bacteria from Addis Ababa municipal solid waste disposal site “Koshe”. Annals of Microbiology, 73, 6.

NESG (2023). Addressing the plastic waste problem in Nigeria. Nigerian Economic Summit Group, Abuja. www.nesgroup.org. Accessed 17th March, 2025

PlasticsEurope, (2018). An analysis of European plastics production, demand and waste data. Plastics‑Europe, Belgium. www.plastics europe.com.

Rajendran, S. D., Kannan, R. V., Natarajan, K., & Durai, N. (2016). The role of microbes in plastic degradation. In: Chandra, R. (ed). Environmental waste management. Chapter 12. Taylor and Francis Group LLC. www.researchgate.net/publication/296896016

Restrepo-Flórez, J. M., Bassi, A., & Thompson, M. R. (2014). Microbial degradation and deterioration of polyethylene—a review. Int. Biodeterior. Biodegrad., 88, 83–90

Usha, R., Sangeetha, T., & Palaniswamy, M. (2011). Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agricultural Resource Central Journal International, 2(4), 200-204.

Usman, L. U., Yerima, R., Haruna, M. R., Adamu, S. U., Nafiu, M. I., Lawal, N., & Mustapha, S. (2019). Assessment of some potential plastic degrading microbes in Katsina, North Western Nigeria. Journal of Microbiology Research, 4(2), 96 – 104.

Zeenat, A. E., Bukhari, D. A., Shamin, S., & Rehman, A. (2021). Plastics degradation by microbes: A sustainable approach. Journal of King Saud University of Science, 33(6), doi.org/10.1016/j.jksus.2021.101538

Published

2025-12-30

How to Cite

James, I. I., Bassey, H. O., Ekong, E. A., Akan, O. D., Ufot, U. F., & Iwatt, M. F. (2025). Effects of Soil Burial on Polythene Film Degradation and Associated Bacterial Species. Faculty of Natural and Applied Sciences Journal of Applied Biological Sciences, 2(4), 51–59. https://doi.org/10.63561/jabs.v2i4.1008