Mechanisms and Therapeutic Potential of Probiotics as Biofilm Disruptors

Authors

  • Morenike Omotayo Adeola Department of Microbiology, Dennis Osadebay University, Asaba, Delta State, Nigeria. | Directorate of Research and Development, Ignatius Ajuru University of Education, Port Harcourt, Nigeria. | Current Research Innovation and Techniques, Microbiology unit, Dennis Osadebay University, Asaba, Delta State, Nigeria.
  • Anna Onome Ofesi Department of Microbiology, Dennis Osadebay University, Asaba, Delta State, Nigeria. | Current Research Innovation and Techniques, Microbiology unit, Dennis Osadebay University, Asaba, Delta State, Nigeria.
  • Ilegbenose Reuben Amhanriamhen Department of Microbiology, Dennis Osadebay University, Asaba, Delta State, Nigeria. | Current Research Innovation and Techniques, Microbiology unit, Dennis Osadebay University, Asaba, Delta State, Nigeria.

DOI:

https://doi.org/10.63561/jabs.v2i4.1005

Keywords:

Probiotics, Biofilm, Biofilm disruption, Antimicrobial resistance, Quorum sensing

Abstract

Biofilms, which are structured populations of bacteria encased in a self-produced extracellular polymeric substance (EPS), provide a serious challenge in clinical medicine, industry, and the environment due to their inherent resilience to antimicrobials and host defenses. As the search for effective, non-antibiotic methods to combat biofilms has intensified, there has been considerable interest in probiotics, which are bacteria that offer health benefits when administered in sufficient amounts. This review aims to evaluate the mechanisms, efficacy, and therapeutic potential of probiotics as biofilm-disrupting agents, with an emphasis on their ability to prevent, weaken, or eradicate pathogenic microbial biofilms across clinical and environmental settings. The objectives of this study were to assess the efficacy of different probiotic species and strains in disrupting established biofilms of clinically relevant pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and others. To evaluate synergistic interactions between probiotics and conventional antimicrobial agents, examining whether combined therapy enhances biofilm eradication or reduces antimicrobial resistance. This study carefully examines the novel role of specific probiotic strains as potent disruptors of biofilms. Among the various mechanisms that probiotics employ is competitive exclusion, the production of antimicrobial substances (bacteriocins, organic acids, hydrogen peroxide), the release of enzymes that degrade biofilms, disruption of quorum sensing (QS), and modification of host immune responses. Probiotics' ability to combat biofilms created by common pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and oral infections is rigorously assessed. Current and prospective uses in industrial biofouling management, agriculture, and medical domains (wound healing, urinary tract infections, dental caries/periodontitis, gastrointestinal infections) are investigated. Probiotics are a viable, environmentally friendly method of controlling biofilms, and in the age of growing antibiotic resistance, they may be used as an adjuvant or substitute treatment.

References

Adeola, M.O., Akinnibosun, I.F., & Odaro, S. I. (2022). Occurrence of community-acquired Panton-Valentine leukocidin-producing and enterotoxin-producing methicillin-resistant staphylococci in companion dogs. Studia Universitatis Babes-Bolyai Biologia, 67,(1), 23-48. doi: 10.24193/subbbiol. 2022.1.02

Alakomi, H. L., Skyttä, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K., & Helander, I. M. (2000). Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied and Environmental Microbiology, 66(5), 2001-2005. https://doi.org/10.1128/AEM.66.5.2001-2005.2000

Anderl, J. N., Franklin, M. J., & Stewart, P. S. (2000). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy, 44(7), 1818-1824. https://doi.org/10.1128/AAC.44.7.1818-1824.2000

Borges, S., Silva, J., & Teixeira, P. (2014). The role of lactobacilli and probiotics in maintaining vaginal health. Archives of Gynecology and Obstetrics, 289(3), 479-489. https://doi.org/10.1007/s00404-013-3064-9

Callaway, T. R., Edrington, T. S., Anderson, R. C., Harvey, R. B., Genovese, K. J., Kennedy, C. N., & Nisbet, D. J. (2008). Probiotics, prebiotics, and competitive exclusion for prophylaxis against bacterial disease. Animal Health Research Reviews, 9(2), 217-225. https://doi.org/10.1017/S1466252308001540

Chu, Y., Nega, M., Wölfle, M., Plener, L., Grond, S., Jung, K., & Götz, F. (2011). A new class of quorum quenching molecules from Staphylococcus species affects the communication and growth of gram-negative bacteria. PLoS Pathogens, 7(9), e1002264. https://doi.org/10.1371/journal.ppat.1002264

Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery, 2(2), 114-122. https://doi.org/10.1038/nrd1008

Derrien, M., & van Hylckama Vlieg, J. E. (2015). Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology, 23(6), 354-366. https://doi.org/10.1016/j.tim.2015.03.002

Dobson, A., Cotter, P. D., Ross, R. P., & Hill, C. (2012). Bacteriocin production: a probiotic trait? Applied and Environmental Microbiology, 78(1), 1-6. https://doi.org/10.1128/AEM.05576-11

Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881-890. https://doi.org/10.3201/eid0809.020063

FAO/WHO. (2002). Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada.

Flemming, H. C., & Wingender, J. (2010). The Biofilm Matrix. Nature Reviews Microbiology, 8(9), 623-633. https://doi.org/10.1038/nrmicro2415

Garrett, T. R., Bhakoo, M., & Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18(9), 1049-1056. https://doi.org/10.1016/j.pnsc.2008.04.001

Giaouris, E., Heir, E., Hébraud, M., Chorianopoulos, N., Langsrud, S., Møretrø, T., & Nychas, G. J. (2015). Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Science, 97(3), 298-309. https://doi.org/10.1016/j.meatsci.2013.05.023

Gudina, E. J., Teixeira, J. A., & Rodrigues, L. R. (2010). Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids and Surfaces B: Biointerfaces, 76(1), 298-304. https://doi.org/10.1016/j.colsurfb.2009.11.008

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., & Calder, P. C. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66

Hoiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35(4), 322-332. https://doi.org/10.1016/j.ijantimicag.2009.12.011

Igere B.E. & Adeola M.O. (2024). Fighting Biofilm Bearing Microbes, Global Challenges, Initiatives and Current Novel Therapeutics/ Antibiofilm Strategies: A Narrative Scientific Record. BON VIEW PUBLISHING, Medinformatics, Vol. 00(00) 1-12. DOI: 10. 47852/bonviewMEDIN42022687.

Invernici, M. M., Salvador, S. L., Silva, P. H., Soares, M. S., Casarin, R., Palioto, D. B., & Messora, M. R. (2018). Effects of Bifidobacterium probiotic on the treatment of chronic periodontitis: A randomized clinical trial. Journal of Clinical Periodontology, 45(10), 1198-1210. https://doi.org/10.1111/jcpe.12995

Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., & Kamil, M. A. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81(1), 7-11. https://doi.org/10.1016/j.jcma.2017.07.012

Kaplan, J. B. (2011). Antibiotic-induced biofilm formation. The International Journal of Artificial Organs, 34(9), 737-751. https://doi.org/10.5301/ijao.5000027

Karlsson, M., Scherbak, N., Khalaf, H., & Olsson, P. E. (2012). Suppression of LPS-induced inflammatory responses in RAW 264.7 macrophages by aqueous extracts of Lactobacillus delbrueckii ssp. bulgaricus. Journal of Inflammation, 9(1), 1-9. https://doi.org/10.1186/1476-9255-9-35

Kim, J. H., Choi, D. C., Yeon, K. M., Kim, S. R., & Lee, C. H. (2018). Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environmental Science & Technology, 52(3), 1185-1192. https://doi.org/10.1021/acs.est.7b03448

Lewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews Microbiology, 5(1), 48-56. https://doi.org/10.1038/nrmicro1557

Llena, C., Forner, L., & Baca, P. (2019). Anticariogenicity of casein phosphopeptide-amorphous calcium phosphate: a review of the literature. Journal of Contemporary Dental Practice, 20(1), 137-142. PMID: 31058630

Mah, T. F., & O'Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9(1), 34-39. https://doi.org/10.1016/S0966-842X(00)01913-2

Marchisio, P., Santagati, M., Scillato, M., Baggi, E., Fattizzo, M., Rosazza, C., & Principi, N. (2015). Streptococcus salivarius 24SMB administered by nasal spray for the prevention of acute otitis media in otitis-prone children. European Journal of Clinical Microbiology & Infectious Diseases, 34(12), 2377-2383. https://doi.org/10.1007/s10096-015-2494-7

Mathur, H., Field, D., Rea, M. C., Cotter, P. D., Hill, C., & Ross, R. P. (2018). Fighting biofilms with antibiotics and other groups of bacteriocins. NPJ Biofilms and Microbiomes, 4(1), 9. https://doi.org/10.1038/s41522-018-0053-6

Mitra, S., Mukherjee, S., & Sen, S. (2021). Quorum quenching enzymes and their potential applications in the control of biofilm-associated microbial infections. Biocatalysis and Agricultural Biotechnology, 35, 102088. https://doi.org/10.1016/j.bcab.2021.102088

Molin, S., & Tolker-Nielsen, T. (2003). Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Current Opinion in Biotechnology, 14(3), 255-261. https://doi.org/10.1016/S0958-1669(03)00036-3

Mu, Q., Tavella, V. J., & Luo, X. M. (2023). Role of Lactobacillus reuteri in Human Health and Diseases. Frontiers in Microbiology, 14, 1090752. https://doi.org/10.3389/fmicb.2023.1090752

O'Hanlon, D. E., Moench, T. R., & Cone, R. A. (2011). In vaginal fluid, bacteria associated with bacterial vaginosis can be killed with lactic acid but not hydrogen peroxide. BMC Infectious Diseases, 11(1), 200. https://doi.org/10.1186/1471-2334-11-200

Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115-125. https://doi.org/10.1016/j.tim.2007.12.009

Rather, I. A., Choi, S. B., Kamli, M. R., & Hakeem, K. R. (2021). Potential adjuvant therapeutic effect of probiotics for biofilm-associated infections. Journal of Applied Microbiology, 130 (1), 19-36. https://doi.org/10.1111/jam.14795

Reid, G., Charbonneau, D., Erb, J., Kochanowski, B., Beuerman, D., Poehner, R., & Bruce, A. W. (2001). Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: randomized, placebo-controlled trial in 64 healthy women. FEMS Immunology & Medical Microbiology, 35(2), 131-134. https://doi.org/10.1111/j.1574-695X.2003.tb00665.x

Rossoni, R. D., de Barros, P. P., de Alvarenga, J. A., Ribeiro, F. C., Velloso, M. D. S., Fuchs, B. B., & Junqueira, J. C. (2018). Antifungal activity of clinical Lactobacillus strains against Candida albicans biofilms: identification of potential probiotic candidates to prevent oral candidiasis. Biofouling, 34(2), 212-225. https://doi.org/10.1080/08927014.2018.1425402

Rutherford, S. T., & Bassler, B. L. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspectives in Medicine, 2(11), a012427. https://doi.org/10.1101/cshperspect.a012427

Schwenger, E. M., Tejani, A. M., & Loewen, P. S. (2015). Probiotics for preventing urinary tract infections in adults and children. Cochrane Database of Systematic Reviews, (12), CD008772. https://doi.org/10.1002/14651858.CD008772.pub2

Sicard, J. F., Le Bihan, G., Vogeleer, P., Jacques, M., & Harel, J. (2017). Interactions of intestinal bacteria with components of the intestinal mucus. Frontiers in Cellular and Infection Microbiology, 7, 387. https://doi.org/10.3389/fcimb.2017.00387

Souto, R., Silva-Boghossian, C. M., & Colombo, A. P. (2020). Prevalence of Enterococcus faecalis in subgingival biofilm and saliva of subjects with chronic periodontal infection. Archives of Oral Biology, 49(3), 197-203. https://doi.org/10.1016/j.archoralbio.2003.11.001

Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. The Lancet, 358(9276), 135-138. https://doi.org/10.1016/S0140-6736(01)05321-1

Teughels, W., Loozen, G., & Quirynen, M. (2011). Do probiotics offer opportunities to manipulate the periodontal oral microbiota? Journal of Clinical Periodontology, 38(s11), 159-177. https://doi.org/10.1111/j.1600-051X.2010.01665.x

Tetz, G. V., & Tetz, V. V. (2010). Prion-like domains in the environment: role in biofilm formation and adhesion activity. Communicative and Integrative Biology, 3(1), 49-50. https://doi.org/10.4161/cib.3.1.10099

Trautner, B. W., Hull, R. A., & Darouiche, R. O. (2003). Escherichia coli 83972 inhibits catheter adherence by a broad spectrum of uropathogens. Urology, 61(5), 1059-1062. https://doi.org/10.1016/S0090-4295(02)02555-8

Twetman, S., & Keller, M. K. (2012). Probiotics for caries prevention and control. Advances in Dental Research, 24(2), 98-102. https://doi.org/10.1177/0022034512452885

Walencka, E., Rózalska, S., Sadowska, B., & Rózalska, B. (2008). The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiological, 53(1), 61-66. https://doi.org/10.1007/s12223-008-0009-y

Published

2025-12-30

How to Cite

Adeola, M. O., Ofesi, A. O., & Amhanriamhen, I. R. (2025). Mechanisms and Therapeutic Potential of Probiotics as Biofilm Disruptors. Faculty of Natural and Applied Sciences Journal of Applied Biological Sciences, 2(4), 27–35. https://doi.org/10.63561/jabs.v2i4.1005